CSI – Montana Floodplains The Challenges of Developing Duplicate and Corrected Effective Models. **Presenters:** Greg Gabel, P.E. DOWL Tom Pluemer, E.I. DOWL #### FEMA Hydraulic Modeling Procedures - > DUPLICATE EFFECTIVE MODEL - Updating the effective model to current modeling software - > CORRECTED EFFECTIVE MODEL - > Fixing errors, updating topography, and adding new XS - > EXISTING/PRE-PROJECT CONDITIONS MODEL - Adding man-made changes since effective model - > PROPOSED/POST-PROJECT CONDITIONS MODEL - > Evaluating the hydraulic impacts of your project #### History of Montana Effective Models - > EFFECTIVE MODELS IN MONTANA - > Big push in the 1970s and 1980s for floodplain mapping - Majority of the effective models are over 30-years old - > Typical WSP-2, WSPRO, or HEC-2 models - > WHAT YEAR WAS HEC-RAS 1.0 RELEASED? - > 1995 Yes, 21-years old - HEC-RAS 5.0 was just released! - > TECHNOLOGY & AVAILABLE DATA - > Advancements make it way easier to model today - Models developed on limited data - File storage was hard copies, no electronic file system #### Resources to Developing Duplicate Effective Models #### > WHAT ARE YOU TYPICALLY GIVEN? - **→** HEC-2, WSP-2, WSPRO input and results files - > Limited documentation from the Flood Insurance Report - **Effective FIRM Maps** #### Model Input and Result - > FADED MICROFICHE COPIES - Hard to read / Missing or Cutoff pages - > Need to understanding the coding - **→** Hand written notes/cross outs - Additional cross sections not showing up in the FEMA maps #### Flood Insurance Study Report #### > LIMITED DOCUMENTATION - Who performed the evaluation - > Hydrologic Analysis Section - > Hydraulic Analyses Section - > Floodway Tables - > Flood Profiles | FLOODING SOURCE | | FLOODWAY | | | BASE FLOOD
WATER SURFACE ELEVATION | | | | | |---|--------------|-----------------|-------------------------------------|--|---------------------------------------|------------------------------|---------------------------|----------|--| | CROSS SECTION | DISTANCE | WIDTH
(FEET) | SECTION
AREA
(SQUARE
FEET) | MEAN
VELOCITY
(FEET PER
SECOND) | REGULATORY | WITHOUT
FLOODWAY
(FEET | WITH
FLOODWAY
NGVD) | INCREASE | | | East Rosebud | | | | | | | | | | | Creek | 1 1 | | | Į. | i | | | | | | A | 1,020 | 632 | 1,824 | 2.9 | 4,195.2 | 4,195.2 | 4.195.7 | 0.5 | | | В | 1,480 | 285 | 704 | 6.8 | 4,203.4 | 4,203.4 | 4,203.9 | 0.5 | | | č | 1,560 | 366 | 1.534 | 3.1 | 4,206.0 | 4,206.0 | 4,206.5 | 0.5 | | | D | 3,000 | 122 | 715 | 6.7 | 4,222.9 | 4,222.9 | 4,223.4 | 0.5 | | | E | 5,100 | 731 | 2,711 | 1.8 | 4,253.6 | 4,253.6 | 4,254.1 | 0.5 | | | F | 8,700 | 767 | 1,949 | 2.4 | 4,295.3 | 4,295.3 | 4,295.8 | 0.5 | | | G | 11,460 | 452 | 825 | 5.8 | 4,333.3 | 4,333.3 | 4,333.8 | 0.5 | | | H | 14,340 | 286 | 1,138 | 4.2 | 4,368.0 | 4,368.0 | 4,368.5 | 0.5 | | | I | 17,000 | 123 | 598 | 8.0 | 4,412.8 | 4,412.8 | 4,413.3 | 0.5 | | | J | 19,360 | 437 | 1,489 | 3.2 | 4,446.6 | 4,446.6 | 4,447.1 | 0.5 | | | K | 21,260 | 356 | 1,108 | 4.1 | 4,470.6 | 4,470.6 | 4,471.1 | 0.5 | | | L | 21,340 | 111 | 750 | 6.1 | 4,474.3 | 4,474.3 | 4,474.8 | 0.5 | | | M | 23,080 | 133 | 846 | 5.4 | 4,496.0 | 4,496.0 | 4,496.5 | 0.5 | | | N | 25,600 | 253 | 1,341 | 3.4 | 4,528.0 | 4,528.0 | 4,528.5 | 0.5 | | | 0 | 26,500 | 381 | 1,098 | 4.2 | 4,540.7 | 4,540.7 | 4,541.2 | 0.5 | | | P | 26,600 | 410 | 817 | 5.6 | 4,542.1 | 4,542.1 | 4,542.6 | 0.5 | | | Q | 27,260 | 258 | 853 | 5.4 | 4,549.1 | 4,549.1 | 4,549.6 | 0.5 | | | | | | | | | | | | | | Feet Above Confl | uence With W | est Roseb | L
ud Creek a | l Rosebud | Creek | | | L | | | EDERAL EMERGENCY MANAGEMENT AGENCY STILLWATER COUNTY, MT (UNINCORPORATED AREAS) | | | | FLOODWAY DATA | | | | | | | | | | | EAST ROSEBUD CREEK | | | | | | #### Flood Insurance Rate Maps #### > PLAN VIEW LAYOUT OF THE MODEL - Cross section locations for letter crossings - Bridge crossings locations #### Developing the Duplicate Effective Model - > PROJECT OVERVIEW - Goal: Replacement of 3 MDT Bridges Along Highway 2 - Location: Immediately West of Chinook, MT - > WHY REPLACE THE BRIDGES??? - Road Widening = Improve Public Safety - Existing Bridges are Wooden Structures - ➢ All 3 Bridges Are At The End Of Their Service Life - > PROJECT CHALLENGES - Located in a Detailed Floodplain - Hydrology - Stream/Reach Lengths - Complex Flow Splits - > PROJECT CHALLENGE #1 DETAILED FLOODPLAIN INVESTIGATION - Multiple Studies on the Floodplain - Original FIS 1987 - LOMR 1993 Chinook Airport Expansion - Updated FIS 2006 - > INITIAL ASSUMPTIONS BASED ON INVESTIGATION - > 1987 FIS - Modeled in HEC-2 - Hydrology Regional Frequency - Basic Flow Spilt Analysis Completed - East and West Overflow Bridges <u>NOT</u> Modeled - No Return Flow From the Overflow Bridges - Milk River and Redrock Coulee Modeled Independently - INITIAL ASSUMPTIONS BASED ON INVESTIGATION (CONTINUED) - > 1993 LOMR - Modeled in HEC-2 - Channel was Lengthened Due to Runway Extension - Hydrology and Flow Splits Adopted from 1987 FIS - Additional XS's Added to Redrock Coulee Model - > 2006 FIS - Incorporated the changes from the 1993 LOMR - > PROJECT CHALLENGE #2 HYDROLOGY - > An Independent Evaluation was Completed - 5 Separate Hydrologic Analysis Completed - Used to verify FIS Hydrology - Drainage Basin Area = 363 sq. mi. - FIS Drainage Basin Area = 265 sq. mi. - > PROJECT CHALLENGE #2 HYDROLOGY - > Investigation into the Previous Studies - Very Limited Documentation - 1987 FIS States there are closed basins for a neighboring stream - Assumption Potential for Closed Basins - Further Review of Aerial Imagery Showed Closed Basins - Drainage Basin Excluding Closed Basins = <u>275 sq. mi.</u> - FIS Drainage Basin Area = 265 sq. mi. - **Conclusion** - Calculated Flows Were Within 10% of the Reported FIS Flows - > PROJECT CHALLENGE #3 STREAM/REACH LENGTHS - Duplicate Effective Model - Data from the 1993 LOMR was used - 2 Cross Sections were Added to the 1987 FIS Model - But the River Stationing was not updated. - Corrected Effective Model - Using Updated Aerial Imagery and GIS - The River Stationing was Updated - Additional Cross Sections Were Added - ▶ PROJECT CHALLENGE #4 FLOW SPLITS - > Flow Splits From the 1987 FIS Were Adopted in the 1993 LOMR - Problems: - Calculated using best technology at the time - Manning's Equation - Flow <u>DID NOT</u> Return to the Model - Limited Documentation = No Explanation Why??? - > PROJECT CHALLENGE #4 FLOW SPLITS - Challenge How to Better Model the Complex Flow - Solution Two-Dimensional Hydraulic Model - FLO-2D PRO was used - Grid Based Model 20 ft Cell Size - DEM Data - Photogrammetry - Topographic Survey - 5 Meter IfSAR Data - Channels Were Built Into the Model - Bridges and Culverts were Modeled as Hydraulic Structures - > PROJECT CHALLENGE #4 FLOW SPLITS - **Findings:** - Two-Dimensional Hydraulic Model Results - Flow Does Return to the Main Channel - Some Flow Does Leave the System - Implications: - Returning Flow = Greater Backwater Influences on All Crossings - 100-yr FIS Flow Downstream of Main Bridge = 1,900 cfs - 100-yr 2-D Flow Downstream of Main Bridge = 4,106 cfs # 100-Year Model – Simulation Time = 0.2 hrs # 100-Year Model – Simulation Time = 0.4 hrs # 100-Year Model – Simulation Time = 0.6 hrs # 100-Year Model – Simulation Time = 0.8 hrs # 100-Year Model – Simulation Time = 1.0 hrs #### 100-Year Model – Simulation Time = 1.2 hrs # 100-Year Model – Simulation Time = 1.4 hrs # 100-Year Model – Simulation Time = 1.6 hrs # 100-Year Model – Simulation Time = 1.8 hrs # 100-Year Model – Simulation Time = 2.0 hrs # 100-Year Model – Simulation Time = 2.2 hrs # 100-Year Model – Simulation Time = 2.4 hrs # 100-Year Model – Simulation Time = 2.6 hrs # 100-Year Model – Simulation Time = 2.8 hrs #### 100-Year Model – Simulation Time = 3.0 hrs #### 100-Year Model – Simulation Time = 4.0 hrs # 100-Year Model – Simulation Time = 6.0 hrs # 100-Year Model – Simulation Time = 8.0 hrs # 100-Year Model – Simulation Time = 10.0 hrs # 100-Year Model – Simulation Time = 14.0 hrs # 100-Year Model – Simulation Time = 20.0 hrs # 100-Year Model – Simulation Time = 20.0 hrs # Lohman – East & West Redrock Coulee Bridge Replacement - > WHERE IS THE PROJECT TODAY: - **➢ All Hydraulic Models Are Complete for Red Rock Coulee** - Models meet a No-Rise Condition Compared to the Existing Conditions: - Road Ditches Were Moved Due to Roadway Widening - Road Ditches Designed to Not Increase Existing WSEL - Re-Designed the Downstream Channel to Increase Flow Capacity - New Bridges Designed with Similar Hydraulics to Existing Bridges - The Project is in the Middle of Final Design and the Floodplain Permit will be submitted in the Near Future #### > 1987 FIS STUDY - Indicated that the hydraulic models were completed in WSP-2, HUD-15 or HEC-2 - No detailed documentation of the hydraulic analysis ### > OBTAINED COPIES OF EFFECTIVE MODEL - > HEC-2 input and results - **➢** Completed in 1980, After the 1959 Road Reconstruction - > REPRODUCED HEC-2 INPUT FILE - Just came back from a conference that suggested recreating the HEC-2 input - > RAN THE INPUT FILE IN HEC-2 - > Results match exact! Great! | T1
T2
T3 | STILLWATER COU
100 YR
E. ROSEBUD | JNTY | | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--| | 01 | ICHECK | INQ | NINV | IDIR | STRT | METRIC | HVINS | Q | WSF1 | FQ | | | 0.000000 | 2.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 3.000000 | 0.000000 | 4195.199 | 0.000000 | | J2 | NPROF | IPLOT | PRFVS | XSECV | XSECH | FN | ALLDC | IBW CHNIM | ITRACE | | | | 1.000000 | 0.000000 | -1.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | | J3 | VARIABLE CODES FOR SUMMARY PRINTOUT | | | | | | | | | | | | 110.0000 | 200.0000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | | NC
QT
ET | 0.150000
2.000000
0.000000 | 0.200000
5354.000
0.000000 | 0.080000
5354.000
5.400000 | 0.300000
0.000000
0.000000 | 0.500000
0.000000
0.000000 | 0.000000
0.000000
0.000000 | 0.000000
0.000000
0.000000 | 0.000000
0.000000
0.000000 | 0.000000
0.000000
0.000000 | 0.000000
0.000000
0.000000 | | X1
GR
GR
GR
GR
GR
GR
GR | 201.0000
4200.000
4194.598
4193.898
4190.199
4190.898
4192.598
4193.500
2.000000 | 33.00000
0.000000
138.0000
378.0000
570.0000
680.0000
775.0000
800.0000
4760.000 | 40.00000
4194.699
4191.098
4192.297
4193.000
4191.699
4191.699
4193.500
4760.000 | 138.0000
40.00000
195.0000
388.0000
590.0000
690.0000
782.0000
830.0000
0.000000 | 0.000000
4189.500
4192.797
4193.699
4193.398
4189.500
4192.000
4196.797
0.000000 | 0.000000
55.00000
228.0000
409.0000
700.0000
785.0000
870.0000
0.000000 | 0.000000
4192.000
4192.699
4192.699
4192.898
4191.199
4190.898
0.000000
0.000000 | 0.000000
80.00000
250.0000
448.0000
730.0000
790.0000
0.000000
0.000000 | 0.000000
4192.098
4193.699
4193.000
4191.098
4192.797
4191.199
0.000000
0.000000 | 0.000000
110.0000
271.0000
543.0000
672.0000
740.0000
795.0000
0.000000
0.000000 | | X1
X5
GR
GR
GR
GR
GR | 202.0000
2.000000
4210.000
4198.199
4196.598
4199.000
4200.000
4209.199 | 29.00000
4203.398
519.9000
751.0000
826.0000
870.0000
1010.000
1230.000 | 817.0000
4203.898
4210.000
4198.000
4196.199
4202.500
4200.598
4209.199 | 880.0000
0.000000
520.0000
763.0000
846.0000
880.0000
1015.000 | 460.0000
0.000000
4204.098
4203.098
4196.898
4203.699
4200.598
4209.598 | 460.0000
0.000000
530.0000
764.0000
851.0000
990.0000
1050.000
1700.000 | 460.0000
0.000000
4202.199
4202.297
4196.398
4199.898
4203.598
4215.699 | 0.000000
0.000000
570.0000
817.0000
856.0000
1000.000
1070.000
1830.000 | 0.000000
0.000000
4202.297
4199.000
4196.398
4199.000
4204.500
0.000000 | 0.000000
0.000000
750.0000
818.0000
861.0000
1005.000
1150.000
0.000000 | - > EXPORTED HEC-2 DATA INTO HEC-RAS - **▶** HEC-RAS model matches exactly the HEC-2 results - Great! Let's move on to Corrected Effective Model - > WORKING ON THE CORRECTED EFFECTIVE MODEL - > The results for these cross sections weren't changing - What's going on? - > Identified the flow file had set water surface elevations. - > Remove them and the model didn't match report WSEL with 0.5-ft - Two different locations were over 2-ft from the reported numbers ### > PUT OUR INVESTIGATION HATS ON - > Reviewed the HEC-2 Data and found the X5 Card in the Code - > Research and found out there was 1975 SCS Flood Analysis Coordinated with SCS Bozeman office to get report and the model results - > INVESTIGATED THE SCS WSP-2 MODEL - **▶** WSEL hard enter in HEC-2 didn't match WSP-2 Results - > Flow data in the HEC-2 model didn't match the WSP-2 Data - Model appears to model Post-1959 bridge - > SCS Mapping shows Post-1959 bridge and roadway alignment - Redeveloped the WSP-2 model in HEC-RAS ## > CSI CONCLUSION ON THE EFFECTIVE MODEL - > The effective model is the 1975 SCS WSP-2 model with updated design flows. - ➤ It was assumed that at the time of the study, there was a requirement to use HEC-2 and this was the project specific decision that wasn't documented. - The FIRM basemap was out of date and didn't reflect the existing roadway alignment. ### > DEVELOPED TWO DUPLICATE EFFECTIVE MODELS - One using HEC-RAS - Using the WSP-2 Model and new flows ### > DEVELOPED THE CORRECTED EFFECTIVE MODEL Incorporated additional cross sections - > OTHER CORRECTIONS - Upgraded XS with more detailed topography - Change reach lengths - > Change expansion and contraction coefficients - > Add some ineffective flow areas - Revised bridge opening to better model pier blockage - > EXISTING CONDITIONS MODEL - Same as the Corrected Effective Model - > AFTER ALL THIS EFFORT, WE WERE FINALLY READY TO EVALUATE THE HYDRAULIC IMPACTS OF THE PROJECT ### > PROPOSED BRIDGE CROSSING - > 330-ft Two-Span Bridge - > Bridge is constructed within the backwater profile of the existing bridge - ➤ Removal of the existing bridge and the Pre-1959 bridge abutment significantly reduces the backwater - Proposed bridge provides a no-rise condition - Upstream roadway embankment was re-designed to prevent hydraulic impacts #### > WHERE IS THE PROJECT AT TODAY? - > Applied for the Floodplain Permit in 2013 - ➤ Received a Floodplain Construction Permit with conditions to complete a LOMR after construction in 2013 - ▶ Project is currently in the Right-of-way phase with an anticipating letting in 2017 or 2018. ## **Key Points** - > TECHNOLOGY IS A WONDERFUL THING - Better Data & More Refined Models - Electronic world has provided better way to manage data - > IT TAKES TIME TO DEVELOP MODELS - > To document and compare the differences - > DOCUMENTATION IS IMPORTANT - Consider engineers 30-plus years from now will be looking at your work - > A little more documentation would save a lot of time investigating.